

unasync

The unasync project’s goal is to produce a permissively licensed [https://github.com/python-trio/unasync/blob/master/LICENSE],
tool that gives you the ability to transform your
asynchronous code into synchronous code.

Why are we doing it ?

You can find the whole discussion here [https://github.com/urllib3/urllib3/pull/1335/].

In short the TLDR; version is, Unasync gives you the ability to transform your asynchronous code
placed in _async directory into into synchronous code and put it in directory named _sync i.e

async def f():
 return await 1

will be transformed and placed in directory _sync

def f():
 return 1

Installation

pip install unasync

Usage

To use the unasync project you need to install the package and then create a _async folder where you will place the asynchronous code that you want to transform into synchronous code.

And then in your setup.py place the following code.

import unasync

setuptools.setup(
 ...
 cmdclass={'build_py': unasync.cmdclass_build_py()},
 ...
)

Then create a file pyproject.toml in the root of your project and mention unasync as one of your build dependency.

[build-system]
requires = ["setuptools>=40.6.2", "wheel", "unasync"]
build-backend = "setuptools.build_meta"

And when you will build your package you will get your synchronous code in _sync folder.

If you’d like to customize where certain rules are applied you can pass
customized unasync.Rule instances to unasync.cmdclass_build_py()

import unasync

setuptools.setup(
 ...
 cmdclass={'build_py': unasync.cmdclass_build_py(rules=[
 # This rule transforms files within 'ahip' -> 'hip'
 # instead of the default '_async' -> '_sync'.
 unasync.Rule("/ahip/", "/hip/"),

 # This rule's 'fromdir' is more specific so will take precedent
 # over the above rule if the path is within /ahip/tests/...
 # This rule adds an additional token replacement over the default replacements.
 unasync.Rule("/ahip/tests/", "/hip/tests/", additional_replacements={"ahip": "hip"}),
])},
 ...
)

Usage outside of setuptools

You can also use unasync without setuptools, to run unasync on tests, for example.

import unasync

unasync.unasync_files(
 [file1, file2, ...],
 rules=[
 unasync.Rule("tests/", "tests_sync/", additional_replacements={"ahip": "hip"}),
]
)

	Release history

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

Release history

Index

 nav.xhtml

 Table of Contents

 		
 unasync

 		
 Release history

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

